3 research outputs found

    An optimal energy management system for islanded Microgrids based on multi-period artificial bee colony combined with Markov Chain

    Get PDF
    The optimal operation programming of electrical systems through the minimization of the production cost and the market clearing price, as well as the better utilization of renewable energy resources, has attracted the attention of many researchers. To reach this aim, energy management systems (EMSs) have been studied in many research activities. Moreover, a demand response (DR) expands customer participation to power systems and results in a paradigm shift from conventional to interactive activities in power systems due to the progress of smart grid technology. Therefore, the modeling of a consumer characteristic in the DR is becoming a very important issue in these systems. The customer information as the registration and participation information of the DR is used to provide additional indexes for evaluating the customer response, such as consumer's information based on the offer priority, the DR magnitude, the duration, and the minimum cost of energy. In this paper, a multiperiod artificial bee colony optimization algorithm is implemented for economic dispatch considering generation, storage, and responsive load offers. The better performance of the proposed algorithm is shown in comparison with the modified conventional EMS, and its effectiveness is experimentally validated over a microgrid test bed. The obtained results show cost reduction (by around 30%), convergence speed increase, and the remarkable improvement of efficiency and accuracy under uncertain conditions. An artificial neural network combined with a Markov chain (ANN-MC) approach is used to predict nondispatchable power generation and load demand considering uncertainties. Furthermore, other capabilities such as extendibility, reliability, and flexibility are examined about the proposed approach

    Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations

    Get PDF
    This paper presents a smart Transactive energy (TE) framework in which home microgrids (H-MGs) can collaborate with each other in a multiple H-MG system by forming coalitions for gaining competitiveness in the market. Profit allocation due to coalition between H-MGs is an important issue for ensuring the optimal use of installed resources in the whole multiple H-MG system. In addition, considering demand fluctuations, energy production based on renewable resources in the multiple H-MG can be accomplished by demand-side management strategies that try to establish mechanisms to allow for a flatter demand curve. In this regard, demand shifting potential can be tapped through shifting certain amounts of energy demand from some time periods to others with lower expected demand, typically to match price values and to ensure that existing generation will be economically sufficient. It is also possible to obtain the maximum profit with the coalition formation. In essence the impact of the consumption shifting in the multiple H-MG schedule can be considered while conducting both individual and coalition operations. A comprehensive simulation study is carried out to reveal the effectiveness of the proposed method in lowering the market clearing price (MCP) for about 15% of the time intervals, increasing H-MG responsive load consumption by a factor of 30%, and promoting local generation by a factor of three. The numerical results also show the capability of the proposed algorithm to encourage market participation and improve profit for all participants
    corecore